DeDAUBP DEDAUB. COM

GYSR

Smart Contract Security Assessment

April 04, 2023

DeDAUBP DEDAUB.. COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the GYSR protocol. Some issues
were found, including Medium and Low severity issues and one Critical issue consisting of
a reentrancy attack. All of them were properly addressed and resolved.

The GYSR protocol is also accompanied by a very thorough and comprehensive test suite
with thousands of test cases covering more than 95% of the entire protocol including
functions, branches, statements and lines with multiple scenarios for each case to
ensure the correctness and enhance the security of the protocol.

BACKGROUND

GYSR allows developers to easily add on-chain incentive methods to their product. For
instance, it can be used for yield farming, distributing a new token, distributing protocol
fees, etc. Dedaub audit v3 of the protocol as a standalone full audit. Version 3 of the
protocol adds new mechanisms (such as bond sale, continuous auctions, fixed-price
payments, etc) and offers more combinations of different staking and reward modules.

SETTING & CAVEATS

This audit report covers the contracts of the at-the-time private repository
gysr-io/core-dev of the GYSR protocol at commit
74631752adfa948b0ate814e284032754d82¢c96e and the changes introduced in the
Pull Request #38 that were delivered in the middle of the audit as part of improvements

in the calculations of ERC20FixedRewardModule and rework of the bookkeeping
mechanisms of that module.

As part of the audit, the auditors also reviewed the fixes for the issues included in the
report. The fixes were delivered as part of a secondary, also private, repo

https://github.com/gysr-io/core-dev
https://github.com/gysr-io/core-dev/pull/38

DeDAUBP DEDAUB.. COM

(qysr-io/core-private) which is aligned with the one used for the audit. The initial

commit of the second repo that aligns both repos is
6e78ee4al52726e34ff9a8dab®8e3c703415e7d31. The auditors reviewed the fixes up to
commit 614df£fb97cb136190594849¢50b29766341f3cd.

A few months after the initial audit, Dedaub was also asked to perform a secondary delta
audit on the recent changes introduced in PR #47 (commit
33aba064b48b9d7f44ef925af51fad09e2dd4b2f) of the at-the-time private repository
gysr-io/core-dev. The changes only affected the ERC20MultiRewardModule.sol

contract, which was also the scope of this delta audit, and consisted of adding some
extra functionality to allow deregistration of a reward token without having to do a
transfer first. The rationale behind this change is that if any of the reward tokens are
faulty and cannot be transferred, all users who have registered them will not be able to
unstake, as the whole process will revert when trying to transfer the faulty tokens,
causing a lockup to this function. However, allowing these tokens to be deregistered and
their rewards renounced without performing a transfer would allow users to unstake. As
a result, the auditors found that the changes have been properly implemented enabling
the desired functionality without introducing any security threats.

Two auditors worked on the codebase for 14 days on the following contracts:

contracts/

— AssignmentStakingModule.sol

— AssignmentStakingModuleFactory.sol
— Configuration.sol

— ERC20BaseRewardModule.sol

— ERC20BondStakingModule.sol

— ERC20BondStakingModuleFactory.sol

— ERC20CompetitiveRewardModule.sol

— ERC20CompetitiveRewardModuleFactory.sol
— ERC20FixedRewardModule.sol

— ERC20FixedRewardModuleFactory.sol

— ERC20FriendlyRewardModule.sol

— ERC20FriendlyRewardModuleFactory.sol

https://github.com/gysr-io/core-private
https://github.com/gysr-io/core-dev/pull/47
https://github.com/gysr-io/core-dev

DeDAUBP DEDAUB.. COM

— ERC20LinearRewardModule.sol

— ERC20LinearRewardModuleFactory.sol
— ERC20MultiRewardModule.sol

— ERC20MultiRewardModuleFactory.sol
— ERC20StakingModule.sol

— ERC20StakingModuleFactory.sol

— ERC721StakingModule.sol

— ERC721StakingModuleFactory.sol

— GeyserToken.sol

— GysrUtils.sol

— MathUtils.sol

— OwnerController.sol

— Pool.sol

— PoolFactory.sol

— TokenUtils.sol

— info/

— AssignmentStakingModuleInfo.sol

— ERC20BondStakingModuleInfo.sol

— ERC20CompetitiveRewardModuleInfo.sol
— ERC20FriendlyRewardModuleInfo.sol

— ERC20LinearRewardModuleInfo.sol

— ERC20StakingModuleInfo.sol

— ERC721StakingModuleInfo.sol

'— PoolInfo.sol

— interfaces/*

The audit’s main target is security threats, i.e., what the community understanding
would likely call “hacking®, rather than the reqgular use of the protocol. Functional
correctness (i.e. issues in “regular use®) is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e. full-detail) specifications of
what is the expected, correct behaviour. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
specification. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most effectively
done through thorough testing rather than human auditing.

DeDAUBP DEDAUB.. COM

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
cateqgorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

Can be profitably exploited by any knowledgeable third-party attacker
CRITICAL | to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

Examples:
e User or system funds can be lost when third-party systems
misbehave.
e DoS, under specific conditions.
e Part of the functionality becomes unusable due to a programming
error.

Examples:
e Breaking important system invariants but without apparent
LOW consequences.
e Buggy functionality for trusted users where a workaround exists.
e Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

DeDAUBP DEDAUB.. COM

CRITICAL SEVERITY:

ID Description STATUS

Reward shares can be drained by the controller devalued
C1 RESOLVED

via a reentrancy attack

This vulnerability arises from two separate issues in different parts of the code:

1. The TokenUtils::receiveAmount/receiveWithFee functions compute the
amount of received tokens as the difference in balance before and after the

transfer.

TokenUtils: :receiveAmount ()

function receiveAmount (
IERC20 token,
uint256 shares,
address sender,
uint256 amount
) internal returns (uint256) 1%
// transfer
uint256 total = token.balanceOf(address(this));
token.safeTransferFrom(sender, address(this), amount);
uint256 actual = token.balanceOf(address(this)) - total;

// mint shares at current rate
uint256 minted = (total > 0)
? (shares * actual) / total
: actual % INITIAL_SHARES_PER_TOKEN;
require(minted > 0);
return minted;

DeDAUBP DEDAUB.. COM

The goal is to support different types of tokens (e.g. tokens with transfer fees). This
approach, however, introduces a possible attack vector: the code could
miscalculate the amount of tokens transferred if some other action is executed in
between the two balance readings. Note that token.safeTransferFrom() is an
external call outside our control. As such, we cannot exclude the possibility that it
returns execution to the adversary (e.q. via a transfer hook).

2. The fund () function, of all reward modules, has no reentrancy guards (likely due
to the fact that funding sounds “harmless®; we send tokens to the contract

without getting anything back).

The possible attack:

We assume a malicious controller that creates a pool with ERC20FixedRewardModule
(for simplicity). His goal is to receive the benefits of staking but without giving any
rewards back. The reward token used in the pool is a legitimate trusted token. We only
assume that it has some ERC777-type transfer hook (or any mechanism to notify the

sender when a transferFrom happens).

1. The adversary funds the reward module and waits until several users have staked
tokens (giving them rights to reward tokens).

2. He then initiotes a number of k nested calls to ERC20FixedRewardModule: : fund

as follows:

ERC20FixedRewardModule: : fund()

function fund(uint256 amount) external {
require(amount > 0, "xrm4");
(address receiver, uint256 feeRate) = _config.getAddressUint96(
keccak256("gysr.core.fixed.fund.fee"));
uint256 minted = _token.receivellithFee (

DeDAUBP DEDAUB.. COM

rewards,
msg.sender,
amount,
receiver,
feeRate

);

rewards += minted;

emit RewardsFunded(address(_token), amount,
minted, block.timestamp);

d. He calls fund() with an infinitesimal amount (say 1 wei). fund calls
receiveWithFee which registers the initial total = balanceOf(this) and

calls token.safeTransferFrom.

TokenUtils::receiveWithFee()

function receiveWithFee(...) internal returns (uint256) 3
uint256 total = token.balanceOf(address(this));
uint256 fee;

if (feeReceiver != address(0) &&
feeRate > 0 && feeRate < 1e18) {
fee = (amount * feeRate) / 1e18;
token.safeTransferFrom(sender, feeReceiver, fee);

token.safeTransfexrFrom(sender, address(this), amount - fee);
uint256 actual = token.balanceOf(address(this)) - total;

uint256 minted = (total > 0)

? (shares * actual) / total

: actual = INITIAL_SHARES_PER_TOKEN;
require(minted > 0);

DeDAUBP DEDAUB.. COM

b. The latter passes control to the adversary (via a send hook), which makes a
nested call to fund, again with amount = 1 wei. Which again leads to a new
token.safeTransferFrom.

c. The process continues until the k-th call, which is now made with a larger
amount = N. The adversary stops making nested calls so the previous calls
finish their execution starting from the most nested one.

d. The last (k-th) call computes actual as the difference between the two
balances which will be equal to N tokens. This causes rewards to be
incremented by the corresponding amount of shares (= (rewards * N) /
total).

e. Now execution returns to the (k-1) -th call, for which the actual transferred
amount was just 1 wei. However, the difference of balances includes the
nested k-th call, so actual will be found to be N (not 1 wei), causing
rewards to be incremented again by the same amount of shares.

f. The same happens with all outer calls, causing rewards to be incremented by
k times more shares than they should!

3. The previous step essentially devalued each reward share, since we printed k times
more shares than we should have. Note that the controller can withdraw all
funds except those corresponding to the shares in debt. But these now are worth
less, so the adversary can withdraw more reward tokens than he should. By picking
k to be as large as the stack allows, and a large value of N (possibly using a flash
loan), the controller can drain almost all reward tokens from the pool, leaving
users with no rewards.

DeDAUBP DEDAUB.. COM

Note that the other reward modules are also likely vulnerable since they all call

receivelWithFee and have no reentrancy qguard.

To prevent this vulnerability reentrancy guards should be added to all fund methods.
Moreover, TokenUtils::receiveAmount could check that the actual transferred
amount is no larger than the expected one. This check would still support tokens with

transfer fees, but would catch attacks like the one reported here.

Resolution:
This vulnerability was fixed by addressing both issues that enabled it. Specifically:
e A check was added in TokenUtils::receiveAmount to ensure that the
transferred amount is no larger than the expected one
e Reentrancy guards were added to the fund function

HIGH SEVERITY:

[No high severity issues]

MEDIUM SEVERITY:

ID Description STATUS

M1 [The use of the factory contracts is only enforced off-chain WON'T FIX

The proper way to deploy a pool and its modules is via the factory contracts. These
contracts ensure that the pool is initialized with proper values that prevent a
potentially malicious controller from stealing the investor’s funds. However, the use of
factory contracts is only checked off-chain. PoolFactory keeps a list of contracts it

DeDAUBP DEDAUB.. COM

created, and this list presumably is used by the GYSR Ul to allow users to interact only
with officially created contracts.

On the other hand, anyone could still create their own Pool contracts and manually
initialize in any way. Such contracts would have identical source code as the legitimate
ones, and it would be hard to recognize them. They would also be clearly unsafe: by
using malicious staking and reward modules, or even a fake GYSR token, an adversary
could easily steal all the funds deposited by investors. Although the off-chain checks
would ensure that no user actually interacts with such contracts, such checks are
inherently less reliable than on-chain ones.

It would be preferable to ensure that contracts with bytecode identical to the official
ones can never be improperly initialized, for instance by allowing their constructor to
be called by a factory contract.

Resolution:

This issue largely concerns off-chain aspects and cannot be fully addressed on-chain.
As a consequence, it will be addressed by adding clear documentation explaining how
to verify the validity of a deployed contract.

Unstaking in ERC20FixedRewardModule is inconsistent
M2 RESOLVED

under different use cases

The ERC20FixedRewardModule was updated as part of the PR_#38 mentioned in the
ABSTRACT section.

The fundamental functions for the users are stake, unstake and claim. When a user
stakes, the pos.debt field holds their potential rewards if they stake for the entire
predefined period. However, a user can always claim their rewards for the amount

already vested.

10

https://github.com/gysr-io/core-dev/pull/38

DeDAUBP DEDAUB.. COM

Here are two scenarios of the same logic that are treated differently:

Case il: The first case assumes that the users will not stake more than once.
This happens when this reward module is combined with the
ERC20BondStaking module since users can’t stake twice with a bond. However,
if they unstake early, for recovering the remaining principal, their rewards
earning ratio should also be reduced. In order for the reward module to achieve
this, it treats the user shares as if they were vesting all together. So, when user
unstakes early only a percentage of all user shares have vested resulting in
losing portion of the earning power as indented.

Case iF2: The second case is when users can stake more than once. This can
happen when this module is combined with other staking modules like
ERC20StakingModule for example. Then, when a user stakes again, the
function calculates the rewards earned up to that point, updates their records
and rolls over the remaining (unvested) amount with the newly added one to
start vesting from that point forward. This approach treats the user shares as if
they were vesting linearly and not all together which means that the user won’t
lose his earning power.

A detailed example illustrating the inconsistency between the 2 cases is provided in
the APPENDIX of this report.

Resolution:

This issue was addressed by modifying the staking logic to remove the inconsistency.

11

DeDAUBP DEDAUB.. COM

LOW SEVERITY:

ID Description STATUS

L1 [Approximation errors in ERC20BondStakingModule RESOLVED

ERC20BondStakingModule needs to perform vesting and debt decay on multiple
amounts which however have different vesting/decay periods. To perform this
operation in 0(1) an approximation method is used, where vesting/decay happens for
the whole amount simultaneously, and the period is essentially restarted in every
update. This method necessarily introduces an approximation error. If multiple updates
happen the resulting values could be substantially lower than the actual ones.

What is particularly problematic is that such delays can be produced by events that do
not add new value to the system. For instance, vesting a large amount could be
substantially delayed by staking (maliciously or coincidentally) small amounts. With
just 5 updates the amount vested at the end of the period will be only 67% of the total.

Note that there is also an “opposite extreme*® strateqgy: instead of restarting the period
on every update, we could choose to never restart until the current amount is fully
vested. Of course, this method also introduces an error. If the newly deposited amounts
are large, delaying them might introduce a larger error than restarting the period.

So we propose to follow a hybrid approach, alternating between the two extremes:
keep a pending amount whose vesting has not started yet, and will start no later than
at the end of the current period, but possibly earlier if it’s preferable. When a new
amount arrives, we will compute how much error will be introduced by starting a new
vesting period, and how much error will be introduced if we delay the new amount, and
we’ll choose the approach of the smallest error.

This report is accompanied by a Jupyter notebook with a discussion of this method, a

prototype implementation and some simulations.

12

https://drive.google.com/file/d/1QZNCcRSA5NKvhkuEcsTqfyX9a30eSUoF/view?usp=share_link

DeDAUBP DEDAUB.. COM

The proposed method has the following properties:

e It needs 0(1) time and is only marginally more complicated than the simple

method.

e |t is guaranteed to vest at least as much as the simple method, and never more

than the maximum amount.

e In order to introduce vesting delays one needs to add new funds to the system,

larger than the ones currently being vested.

Resolution:
This issue was addressed by an improved logic that resets the time period only on stake

operations, improving the accuracy while simplifying the code.

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the

project, but we recommend considering them.

ID Description STATUS

_beforeTokenTransfer () is not correctly overridden in
ERC20BondStakingModule

Al RESOLVED

The ERC20BondStakingModule contract overrides the
ERC721:: beforeTokenTransfer() hook. However, the overridden hook hasn’t the
same signature as the original one causing the compilation to fail. The missing part is

the 4th argument which should have been another uint256.

13

DeDAUBP DEDAUB.. COM

ERC721:: _beforeTokenTransfer ()

function _beforeTokenTransfexr(
address from,
address to,
uint256, /* firstTokenId =/
uint256 batchSize
) internal virtual 3%
if (batchSize > 1)
if (from != address(0)) 4
_balances[from] -= batchSize;
%
if (to != address(0)) %
_balances[to] += batchSize;

function _beforeTokenTransfer(
addrxess from,
address to,
uint256 tokenId
) internal override {
if (from != address(0)) _remove(from, tokenId);
if (to != address(0)) _append(to, tokenId);

A2 | Failing tests RESOLVED

There are some cases in the test scripts that fail due to the grammar changes that 0z
introduced at commit fbf235661e01e27275302302b86271a8ecl36fea. They
updated the revert messages of the approve(), transferFrom() and
safeTransferFrom() functions from:

14

https://github.com/OpenZeppelin/openzeppelin-contracts/commit/fbf235661e01e27275302302b86271a8ec136fea#diff-e2836bd953dd43371de037aa4eef3b8dd1981b3833b4def3f228e88668e377d0

DeDAUBP DEDAUB.. COM

e “ERC721: caller is not token owner nox approved”
to:
e “ERC721: caller is not token owner or approved”

However, the tests haven’t been updated to reflect the new changes, so they fail.
The affected tests are the following:

e aquarium.js
o LoC:113 - “when token transfer has not been approved”

e erc20bondstakingmodule.js

o LoC: 1680 - "when user transfers a bond position they do not
own"

o LoC: 1689 - "“when user safe transfers a bond position they do
not own"

o LoC: 1699 - “when user transfers a bond position that they

already transferred”

A3 | Minor gas optimization RESOLVED

Since the protocol tries to minimize the gas consumption to the minimum possible, we
suggest here a minor optimization in ERC20FixedRewardModule.

The pos.updated value could be updated inside the if statement above instead of
having to check again whether the period has ended or not.

ERC20FixedRewardModule: :claim()

function claim(
bytes32 account, address, address receiver, uint256, bytes calldata
) external override onlyOwner returns (uint256, uint256) 4

15

DeDAUBP DEDAUB.. COM

if (block.timestamp > end) %
e =d;
t else %
uint256 last = pos.updated;
e = (d * (block.timestamp - last)) / (end - last);

§

// Dedaub: This update could be transferred to the above if statement
// for avoiding rechecking whether the period has ended
pos.updated = uint128(block.timestamp < end ? block.timestamp : end);

A4 | Inconsistent comment in OwnerController RESOLVED

The OwnerController contract provides functionality for the rest of the protocol

contracts to manage their owners and their controllers.

However, while the comments of the transferOwnership() function state that the
owner can renounce ownership by transferring to address (0), this is not possible with

the current code as it reverts when the newOwnexr address is 0.

OwnerxController: :transferOwnexrship()

[**
* @dev Transfers ownership of the contract to a new account ('newOwner').
* This can include renouncing ownership by transferring to the zero
* address. Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override %
requireOwner();
require(newOwner != address(0), "oc3");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;

16

DeDAUBP DEDAUB.. COM

A5 | Gas optimization in duplicate check RESOLVED

In several functions there are nested loops to check that no duplicate arguments are

given. For instance:

ERC20MultiRewardModule: :update()

function update(
bytes32 account,
address,
bytes calldata data
) external override %

for (uint256 i; i < count; ++1i) %
// verify no duplicates
for (uint256 j; j < i; ++3j) 1
pos = 228 + 32 * 7j;
address prev;
assembly %
prev := calldataload(pos)

§

require(addr != prev, "mrm20");

These checks can be performed more efficiently by requiring that arguments are
always passed sorted to the function (at the cost of making the caller code a bit more

complex).

INFO

A6 [Compiler bugs

The code is compiled with Solidity ©.8.18. Version 0.8.18, at the time of writing, has
no known bugs.

17

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1775

DeDAUBP DEDAUB.. COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub’s auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

18

DebAuUuP

APPENDIX

DEDAUB.COM

A detailed example for M2

ERC20FixedRewardModule: :stake()

function stake(

bytes32 account,
address,

uint256 shares,
bytes calldata

) external override onlyOwner returns (uint256,

uint256 reward = (shares * rate) / 1eil8;
require(reward <= rewards - debt, "xrm3");

Position storage pos = positions[account];
uint256 d = pos.debt;
if (d > 0) §

§

pos.debt = d + rewaxd;

pos.timestamp = uint128(block.timestamp);
pos.updated = uint128(block.timestamp);

debt += reward;
return (0, 0);

uint256) 1

function unstake(

bytes32 account,
address,
address receiver,

19

DebAuUuP

DEDAUB.COM

uint256 shares,
bytes calldata

) external override onlyOwner returns (uint256, uint256) 4
Position storage pos = positions[account];
require(pos.timestamp < block.timestamp);

// unstake debt shares
uint256 burned = (shares * rate) / 1e18;

)
uint256 vested = pos.vested; // burn vested shares first
if (vested > burned) {
pos.vested = vested - burned;
burned = 0;
t else if (vested > 0) {
buxrned -= vested;
pos.vested = 0;
§
§

uint256 unvested;

// get all pending rewards
uint256 d = pos.debt;
uint256 end = pos.timestamp + period;
uint256 r = pos.earned;
uint256 e;
if (block.timestamp > end) %
e = d;
t else %
uint256 last = pos.updated;
e = (d * (block.timestamp - last)) / (end - last);
// lost unvested reward shares
unvested = (burned * (end - block.timestamp)) / period;
if (d - e - unvested < 1e6) unvested = d - e; // dust

// update user position

20

DebAuUuP

DEDAUB.COM

pos.debt = d - e - unvested;

// reduce global debt
if (unvested > 0) debt -= unvested;

function claim(

bytes32 account,
address,

address receiver,
uint256,

bytes calldata

) external override onlyOwner returns (uint256, uint256) 1

Position storage pos = positions[account];
uint256 d = pos.debt;
uint256 end = pos.timestamp + period;
uint256 r = pos.earned;
uint256 e;
if (block.timestamp > end) %
e = d;
t else %
uint256 last = pos.updated;
e = (d * (block.timestamp - last)) / (end - last);

// update user position
pos.debt = d - e;
pos.earned = 0;

pos.updated = uintl128(block.timestamp < end ? block.timestamp :

end);

21

DeDAUBP DEDAUB.. COM

In the following example we illustrate the inconsistency between the 2 cases of M2:

Staking Only Once

1. A user stakes for the first time an amount that corresponds to a number of X

rewards.

Snapshot #1.1 - After 1st stake()

period P

block. timestamp 0]
pos.debt X
pos.vested 0]
pos.timestamp 0]
pos.updated 0]

2. He then calls claim() when only half of the period has elapsed. This means that

50% of his initial stake is vested and he withdraws 50% of X.

Snapshot #1.2 - After claim()

period P

block. timestamp P/2

pos.debt X/2

pos.vested 0]

pos.timestamp 0]

pos.updated P/2

22

DeDAUBP DEDAUB.. COM

3. Then, another 25% of the period passes and the user unstakes part of his stake. He

calls unstake with an amount corresponding to the 75% of his initial stake.

o What happens is that since the pos.vested hasn’t been updated in the
meantime when the claim happened, the burned will not get deducted by the
amount of the already vested shares. This means that pos.debt will end up
subtracting more than the actual amount which corresponds to the already
vested shares resulting in losing earning power for the remaining shares which
complies with the behavior associated with ERC20BondStakingModule.

Snapshot #1.3 - After unstake()

period P

block. timestamp 3P/4

(unstake) e X/4

burned 3X/4

unvested | 3X/16

pos.debt X/16

pos.vested 0

pos.timestamp 0]

pos.updated 3P/4

23

DeDAUBP DEDAUB.. COM

Staking Multiple Times

1. A user stakes for the first time an amount that corresponds to an amount of X

rewards.

Snapshot #2.1 - After 1st stake()

period P

block. timestamp 0]
pos.debt X
pos.vested 0]
pos.timestamp 0]
pos.updated 0]

2. He then calls claim() when only half of the period has elapsed. This means that

50% of his initial stake is vested and he withdraws 50% of X.

Snapshot #2.2 - After claim()

period P

block. timestamp P/2

pos.debt X/2

pos.vested 0]

pos.timestamp 0]

pos.updated P/2

3. Then, another 25% of the period passes and the user wants to unstake part of his

initial stake.

24

DeDAUBP DEDAUB.. COM

o

This time, before calling unstake he stakes again with an infinitesimal amount
(say 1 wei). This results in updating pos.vested value to keep the already

vested amount of shares like if they were vesting linearly and not all together.

Snapshot #2.3 - After 2nd stake()

period P
block. timestamp 3P/4
(stake) e 3X/4
pos.debt | ~ X/4
pos.vested 3X/4
pos.timestamp 3P/4
pos.updated 3P/4

He then calls unstake with an amount corresponding to the 75% of his initial
stake. Now, pos.vested has been updated and the burned will result in
getting a 0 value. This means that pos.debt will end up subtracting less
amount than the previous case which corresponds only the bahavior of having
the shares vest linearly meaning that the user will not lose his earning power
this time which may comply with bahaviors associated with other Staking

Modules that allow multiple staking.

Snapshot #2.4 - After unstake()

period P
block.timestamp 3P/4
(unstake) e X/4
burned 0]

25

DebAuUuP

DEDAUB.COM

unvested 0]
pos.debt X/4

pos.vested 0
pos.timestamp 3P/4
pos.updated 3P/4

26

